报告题目:Graph Neural Networks: Models and Applications
报告人:周川副研究员,中国科学院数学与系统科学研究院
报告时间:2022年5月18日下午15:00-16:00
报告地点:腾讯会议(会议号:551590846)
主持人:何伟骅
报告摘要:In recent years, there has been a surge of interest in Graph Neural Network (GNN) approaches for graph representation learning. GNN generalizes Convolutional Neural Network (CNN) from low-dimensional regular grids to graph structure data. To date, GNN has been successfully applied to many noteworthy applications. This speech will review the GNN with the background, emerging challenges, basic concepts, state-of-the-art models, applications and then introduce some of our recent advances on this topic.
专家简介:周川,中科院数学院副研究员,博士生导师。研究方向为社交网络分析与图机器学习,发表论文100余篇,授权专利9项。曾获2014年度中科院优秀博士学位论文奖、ICCS-14最佳论文奖、IJCNN-17最佳学生论文奖、ICDM-21最佳学生论文奖。入选中科院数学院“陈景润未来之星”、中科院青促会会员、CCF高级会员。承担2项国家自然科学基金、3项国家重点研发计划子课题。担任中国工业与应用数学学会ICT数学专委会秘书长。