学校主页 English

当前位置: 网站首页 > 科研 > 正文

科研

科研

数苑讲坛2023(三十二):Higher Order Extended Dynamic Mode Decomposition Based on the Structured Total Least Squares

发布日期:2023-06-02 浏览次数:

报告题目:Higher Order Extended Dynamic Mode Decomposition  Based on the Structured Total Least Squares

人:丁维洋 研究员 复旦大学

报告时间: 2023651400

报告地点:龙洞校区610会议室

人:常静雅


报告摘要:We develop a data-driven approach for analyzing the underlying dynamics from snapshots, which is called the higher order extended dynamic mode decomposition (HOEDMD) in this paper. The HOEDMD method, generalizing the extended dynamic mode decomposition, can handle the case when the spectral complexity of the dynamical system exceeds its spatial complexity. Moreover, the proposed method is capable of analyzing the snapshots taken from multiple trajectories by a mode-frequency-individual decomposition. We also introduce the structured total least squares technique for denoising and debiasing purposes and discuss efficient implementation details. The ability of our proposed method to accurately retrieve the modes with frequencies in linear dynamical systems is proved, which further provides an empirical choice for an optimal order. Finally, we evaluate the proposed structured total least squares based HOEDMD algorithm and apply it to four kinds of dynamical systems: a synthetic linear system to show that the proposed algorithm is less sensitive to the noises; a nonlinear dynamical system of iterates from a multilinear PageRank model to illustrate the necessity of introducing higher order cases; real-world signals for time series classification to indicate individual coefficients could parameterize trajectories and kernel tricks can be employed to enhance its performance on nonlinear real-world systems; and a real-world dynamical system of fMRI data to show the proposed algorithm retrieves modes more stably over several other dynamic mode decomposition variants


简介:丁维洋博士现就职于复旦大学类脑智能科学与技术研究院,担任青年研究员。他于2011年和2016年在复旦大学数学科学学院获得理学学士学位和博士学位。201610月至20178月,他在香港理工大学应用数学系祁力群讲席教授的团队作博士后研究。20179月至202011月,他在香港浸会大学数学系担任研究助理教授。其后于202011月加入复旦大学类脑智能科学与技术研究院。丁博士近期的主要研究兴趣包括张量计算和优化及其在脑与类脑科学领域中的应用。

 

联系方式

地址导航:广州市天河区迎龙路161号广东工业大学数学与统计学院
联系电话:020-87084403 邮政编码:510520
邮箱:yysxxy@gdut.edu.cn

contact

School of Mathematics and Statistics, Guangdong University of Technology Copyright.
No. 161 Yinglong Road, Tianhe District, Guangzhou, 510520, P.R.China ;

广东工业大学数学与统计学院 版权所有 粤ICP备05008833号