报告题目:Adaptive trajectories sampling for solving PDEs with deep learning methods
报 告 人:邹青松教授,中山大学计算机学院
报告时间:2023年9月18日(星期一)下午16:00-17:00
报告地点:龙洞行政楼610报告厅
主 持 人:陈学松
摘要:In this paper, we propose a novel adaptive technique, named {\it adaptive trajectories sampling} (ATS), to select training points for learning the solution of partial differential equations (PDEs). By the ATS, the training points are selected adaptively according to an empirical-value-type instead of residual-type error indicator from trajectories which are generated by a PDE-related stochastic process. We incorporate the ATS into three known deep learning solvers for PDEs, namely, the adaptive physics-informed neural network method (ATS-PINN), the adaptive derivative-free-loss method (ATS-DFLM), and the adaptive temporal-difference method for forward-backward stochastic differential equations (ATS-FBSTD).Our numerical experiments demonstrate that the ATS remarkably improves the computational accuracy and efficiency of the original deep learning solvers for the PDEs. In particular, for some specific high-dimensional PDEs, the ATS can even improve the accuracy of the PINN by two orders of magnitude.
个人简介 : 邹青松, 中山大学计算机学院教授 ,科学计算系主任,广东省计算数学学会理事长。长期从事科学计算领域研究工作。在传统科学计算领域,主要研究有限体积法和有限元方法。在人工智能科学计算(科学智算)领域,主要研究偏微分方程的深度学习算法和基于AI的分子性质预测,并涉及AI科学计算多学科领域的评测。发表SCI期刊论文60多篇,多篇发表在SIAM J Numer Anal,Numer Math, Math Comp, J Comp Physics等知名刊物。主持国家自然科学基金项目5项,参与科技部重点研发项目2项(课题负责人1项)。获2020年度广东省自然科学二等奖(排名第一)。