报告题目:Monochromatic $k$-connection number of graphs
报 告 人:Prof. Henry Liu,中山大学
报告时间:2023年12月14日(周四)上午10:00-11:00
报告地点:龙洞行政楼610
主持人:何伟骅
报告摘要:For a $k$-connected graph $G$, the monochromatic $k$-connection number $mc_k(G)$ of $G$ is the maximum number of colours in an edge-colouring of $G$ such that, any two vertices are connected by $k$ internally vertex-disjoint monochromatic paths. The function $mc_k(G)$ is an extension of the monochromatic connection number $mc(G) := mc_1(G)$ which was introduced by Caro and Yuster in 2011, and is the natural opposite to the rainbow $k$-connection number $rc_k(G)$, introduced by Chartrand, Johns, McKeon and Zhang in 2009. In this talk, we present some results for the monochromatic $k$-connection number $mc_k(G)$, including when $G$ is a general $k$-connected graph, and when $G$ is a complete graph and a complete bipartite graph. Joint work with Qingqiong Cai (Nankai University), Shinya Fujita (Yokohama City University) and Boram Park (Ajou University).
专家简介:中山大学数学学院副教授,本科和硕士毕业于英国University College London,美国Memphis大学博士,学习经历包括剑桥大学的高等数学研究中心,并先后在匈牙利Alfred Renyi Institute of Mathematics、西班牙Universitat Politecnica de Catalunya、英国University College London、葡萄牙Universidade Nova de Lisboa、中南大学从事博士后研究工作。师从国际著名数学家Béla Bollobás教授(培养出包括1998年菲尔茨奖获得者Timothy Gowers在内的多名国际著名数学家),研究兴趣包括极值图论、随机组合、代数图论以及超图等多个领域,在J. Graph Theory、SIAM Discrete Math.、Linear Algebra & its Applications等学科内国际主流SCI源期刊发表近30篇论文。