学校主页 English

当前位置: 网站首页 > 科研 > 正文

科研

科研

数苑讲坛2024(三十一):Packing edge colorings of subcubic graphs

发布日期:2024-06-14 浏览次数:

报告题目:Packing edge colorings of subcubic graphs

人:刘旭钧,西交利物浦大学

报告时间:2024年6月27日(周四)下午15:00-16:00

报告地点:龙洞校区行政楼610

人:何伟骅

报告摘要:A matching (induced matching) is a set of edges $E$ such that each pair of edges in $E$ has distance at least two (three). A $(1^{\ell},2^k)$-packing edge-coloring of a graph $G$ is a partition of its edge set into $\ell$ matchings and $k$ induced matchings. Gastineau and Togni showed there are subcubic graphs that are not $(1,2,2,2,2,2,2)$-packing (abbreviated to $(1,2^6)$-packing) edge-colorable and not $(1^2,2^3)$-packing edge-colorable. They also asked the question “whether every subcubic graph is $(1,2^7)$-packing edge-colorable?”. Very recently, Hocquard, Lajou, and Lu\v zar showed that every subcubic graph is $(1,2^8)$-packing edge-colorable and $(1^2,2^5)$-packing edge-colorable. They also conjectured that every subcubic graph is $(1,2^7)$-packing edge-colorable. Furthermore, Gastineau and Togni, as well as Hocquard, Lajou, and Lu\v zar, have conjectured that every subcubic graph is $(1^2,2^4)$-packing edge-colorable.We confirm both conjectures. This is based on a joint work with Santana and Short, and a joint work with Gexin Yu.


专家简介:刘旭钧,西交利物浦大学助理教授。20208月博士毕业于美国伊利诺伊大学厄巴纳香槟分校,导师是Alexandr Kostochka教授。20208月至20218月在UIUC工程系做博士后,导师是 Olgica Milenkovic教授。 主要研究兴趣是图的染色,拉姆齐理论,和秘书问题。在 CPC, JGTIEEE Transactions on Information Theory等组合数学与信息论期刊与会议共发表十余篇学术论文。

联系方式

地址导航:广州市天河区迎龙路161号广东工业大学数学与统计学院
联系电话:020-87084403 邮政编码:510520
邮箱:yysxxy@gdut.edu.cn

contact

School of Mathematics and Statistics, Guangdong University of Technology Copyright.
No. 161 Yinglong Road, Tianhe District, Guangzhou, 510520, P.R.China ;

广东工业大学数学与统计学院 版权所有 粤ICP备05008833号