报告题目:Recent results on blow-up suppression for the Patlak-Keller-Segel-Navier-Stokes system via Couette flow
报 告 人:王文栋教授(大连理工大学)
报告时间:2026年1月8日(周四)14:30-15:30
报告地点:腾讯会议925-877-388
邀 请 人:翟小平
Abstract: It is well-known that the solution of the Patlak-Keller-Segel system in 2D has a critical mass of $8\pi$ and in 3D may blow up in finite time regardless of any initial cell mass. Here we are interested in the suppression of blow-up and the critical mass threshold for the Patlak-Keller-Segel-Navier-Stokes system via the Couette flow. It is proved that if the Couette flow is sufficiently strong, which can be estimated precisely, then the solutions for the system are global in time.
报告人简介:王文栋,大连理工大学数学科学学院教授、博士生导师。入选中组部“青年拔尖人才”计划、大连市高层次人才项目,主持国家自然科学基金四项。硕博毕业于中科院数学所,在北京大学、香港中文大学、牛津大学数学所从事过博士后研究或担任访问学者。目前研究主要集中在流体力学方程组(包括Navier-Stokes方程、MHD方程、趋化模型、液晶方程等)的正则性、稳定性与奇性分析。已在国内外著名学术期刊《Arch. Ration. Mech. Anal.》,《J. Funct. Anal.》,《Ann. Inst. H. Poincaré C Anal. Non Linéaire》,《Calc. Var. Partial Differential Equations》,《SIAM J. Math. Anal》发表学术论文三十余篇。