2023年偏微分方程青年研讨会 (二)
会议通知
为交流近年来在偏微分方程及其应用领域所取得的最新研究成果,研讨相关的前沿课题,同时促进偏微分方程相关领域的专家,特别是青年学者之间的交流与合作,华南师范大学数学学院和广东工业大学数学与统计学院将于2023年6月30日举办《2023年偏微分方程青年研讨会2》。会议详细信息如下:
学术委员会
陈智奇 丁时进 李进开 卫雪梅
组织委员会
彭红云 解斌强 翟小平 郑儒东
主办单位:
广东工业大学数学与统计学院
广东工业大学数学与统计学院(代章)
2023年6月30日
会议日程(6月30日星期五)
时间 |
报告人 |
单位 |
题目 |
15:00-15:10 |
开幕式 |
15:10-15:40 |
李进开 |
华南师范大学 |
Global existence for a class of large solution to compressible Navier-Stokes equations with vacuum |
15:40-16:10 |
鲁建 |
华南师范大学 |
Some existence results for Minkowski type problems |
16:10-16:30 |
茶歇 |
16:30-17:00 |
王勇 |
华南师范大学 |
Analysis on the viscoelastic electrically conducting fluid equations |
17:00-17:30 |
翟小平 |
广东工业大学 |
Global well-posedness for the compressible viscous non-resistive MHD system |
18:00-20:00 |
晚餐 |
ABSTRACT
Inhomogeneous regularities and uniform boundedness of entropy to compressible Navier-Stokes in multi-dimensions
李进开
摘要:In this talk, we will consider the following two issues for the Cauchy problem to the heat conductive compressible Navier-Stokes equations in the presence of far field vacuum: (i) regularities of solutions in the inhomogeneous Sobolev spaces; (ii) uniform boundedness of the entropy. The previous works concerning these two issues focus on the case in one dimension. While in this talk, we will update the results for the case in multi-dimensions. This talk is based on a recent joint work with Prof . Zhouping Xin.
个人简介:李进开 华南师范大学数学科学学院教授,博士生导师。2022年入选“国家高层次人才特殊支持计划”科技创新领军人才,2018年入选“国家海外高层次人才引进计划”青年项目,曾获得“2020世界华人数学家联盟最佳论文奖”金奖(2020 ICCM Best Paper Award)以及“第二届中国科协优秀科技论文”奖。目前已在包括CPAM, Adv. Math, JFA, ARMA, CPDE, SIMA等国际学术期刊上发表SCI论文40多篇。
Some existence results for Minkowski type problems
鲁建
摘要:Some Minkowski type problems arise from modern convex geometry. In the smooth case, they are usually equivalent to solving a class of Monge-Ampere type equations defined on the unit hypersphere. These equations could be degenerate or singular in different conditions. We will talk about some recent new existence results for the Orlicz-Minkowski problem and its dual problem.
个人简介:鲁建,华南师范大学教授。2021年入选国家高层次人才优秀青年项目,研究方向主要为偏微分方程,特别是Monge-Ampere 型方程及其在几何中的应用。在 Adv. Math.、J. Funct. Anal.、Trans. Amer. Math. Soc.、Calc. Var. Partial Differential Equations、J. Differential Equations 等数学期刊上发表 SC收录论文10余篇。
Analysis on the viscoelastic electrically conducting fluid equations
王勇
摘要:We derive a kind of viscoelastic electrically conducting fluid equations by using energetic variational approaches. Then we prove the global well-posedness of the 3D boundary value problems of this system in bounded or unbounded domains under various physical boundary conditions for the electrostatic potential.
个人简介:王勇,华南师范大学数学科学学院教授、博导。2016年博士毕业于厦门大学,主要从事流体力学偏微分方程组的研究,主持国家重点研发计划青年科学家项目等基金共计4项,2019年入选广东省珠江人才--青年拔尖计划,已在包括SIMA,JDE,Nonlinearity等期刊中发表20余篇学术论文。
Global well-posedness for the compressible viscous non-resistive MHD system
翟小平
摘要:How to construct the global small solutions to the compressible viscous non-resistive MHD system in $\mathbb{R}^3$ is an open problem. In the report, I will present some recent processes about this problem.
个人简介:翟小平,博士,毕业于华南理工大学,中山大学博士后,主要研究非线性偏微分方程解的适定性问题,在相关方向发表sci论文多篇,主持国家自然科学基金青年基金和广东省自然科学基金面上项目。入选深圳市后备人才计划。