报告题目:A spectral condition for cycles with consecutive lengths: a Ramsey Theory approach
报告人:宁博副教授,南开大学
报告时间:2022年5月27日下午15:00-16:00
报告地点:腾讯会议(会议号:339773238)
主持人:何伟骅
报告摘要:Nikiforov (2008) posed the following open problem: What is the maximum $C$ such that for all positive $\varepsilon<C$ and sufficiently large $n$, every graph $G$ of order $n$ with spectral radius $\rho(G)>\sqrt{\lfloor\frac{n^2}{4}\rfloor}$ contains a cycle of length $\ell$ for every integer $\ell\leq (C-\varepsilon)n$?
By using some ideas from Ramsey Theory and some powerful spectral inequality, we prove that C\geq \frac{1}{4}, improving the previous best bound.
专家简介:宁博,理学博士,南洋理工大学访问学者,现任南开大学副教授。研究兴趣主要是结构图论、极值图论和谱图理论,在《Combinatorica》、《J. Combin. Theory Ser. B 》、《Combin. Probab. Comput.》、《SIAM J. Discrete Math.》、《 J. Graph Theory》等国际期刊发表论文40余篇,主持国家自然科学基金2项,参与国家自然科学基金2项和科技部重点研发计划。