学校主页 English

当前位置: 网站首页 > 科研 > 正文

科研

科研

数院讲坛2025(三十四):Analysis of Grouped and Right-censored Count Data in Social Sciences

发布日期:2025-11-17 浏览次数:

报告题目:Analysis of Grouped and Right-censored Count Data in Social Sciences

人:郭昕(澳大利亚昆士兰大学)

报告时间:20251120日周四上午10:30

报告地点:广东工业大学龙洞校区行政楼610


报告摘要:Parameter and density estimation for count models are classical problems in statistics, and are widely used in many branches of physical and social sciences. Grouped and right-­censored (GRC) counts are widely used in criminology, demography, epidemiology, marketing, sociology, psychology and other related disciplines to study behavioural and event frequencies, especially when sensitive research topics or individuals with possibly lower cognitive capacities are at stake. Yet, the co-­existence of grouping and right-­censoring poses major difficulties in regression analysis. To implement generalised linear regression of GRC counts, we derive modified Poisson estimators and their asymptotic properties, develop a hybrid line search algorithm for parameter inference, demonstrate the finite-sample performance of these estimators via simulation, and evaluate its empirical applicability based on survey data of drug use in America. This method has a clear methodological advantage over the ordered logistic model for analysing GRC counts.


个人简介:郭昕老师任职于昆士兰大学数学与物理系,数学数据科学高级讲师;2006年北京师范大学数学与应用数学学士;2008年和2011年香港城市大学研究型硕士和博士,201110月至20132月在该校担任研究员;20132月至20148月期间,美国杜克大学统计科学系担任博士后研究员;20221月入职昆士兰大学,曾就职于香港理工大学;研究兴趣包括统计学习理论(如核方法、随机梯度方法、支持向量机、成对学习、在线学习、误差分析、稀疏性分析及算法实现)、数学数据科学,以及这些方法在人工智能、免疫生物信息学、系统生物学和计算社会科学中的应用等。

 

 

 

联系方式

地址导航:广州市天河区迎龙路161号广东工业大学数学与统计学院
联系电话:020-87084403 邮政编码:510520
邮箱:yysxxy@gdut.edu.cn           sxytjxy@gdut.edu.cn

contact

School of Mathematics and Statistics, Guangdong University of Technology Copyright.
No. 161 Yinglong Road, Tianhe District, Guangzhou, 510520, P.R.China ;

广东工业大学数学与统计学院 版权所有 粤ICP备05008833号