报告题目:On The Existence of Multi-dimensional Compressible MHD Contact Discontinuities
报告人:辛周平教授(香港中文大学)
报告时间:2022年9月29日15:00-16:00
报告地点:腾讯会议 180 792 635
主持人:王振友教授
报告摘要:Contact discontinuities for the ideal compressible magnetohydrodynamics (MHD) are most typical interfacial waves for astrophysical plasmas and prototypical fundamental waves for systems of hyperbolic conservations. Such waves are characteristic discontinuities for which there is no flow across the discontinuity surface while the magnetic field crosses transversally, which lead to a two-phase free boundary problem where thepressure, velocity and magnetic field are continuous across the interface whereas the entropy and density may have discontinuities. Some of the major difficulties for the existence of the Multi-dimensional ideal MHD contact discontinuities are the possible nonlinear Rayleigh-Taylor instability and loss of derivatives due to the non-ellipticity ofthe associated linearized problem. In this talk, I will present the recent work where we have proved the local existence and uniqueness of MHD contact discontinuities in both 2D and 3D in Sobolev spaces without any additional constraints such as Rayleigh-Taylor sign condition or with surface tensions. The key ingredients of our analysis are on the Cauchy formula for MHD, the transversality of the magnetic field, and an elaborateviscous approximation. This talk is based on a joint work with Professor Yanjin Wang of Xiamen University.
专家简介:辛周平,香港中文大学教授,博士生导师。非线性偏微分方程领域国际著名数学家,国际数学家大会(ICM))45分钟特邀报告人,教育部高层次人才,香港中文大学蒙民伟讲座教授,香港中文大学数学研究所执行所长,国家数学天元基金学术领导小组成员,“国家天元数学中心”学术委员会成员。1982年本科毕业于西北大学,1988年博士毕业于密歇根大学。1988年至2001年在纽约大学柯朗数学研究所工作,1998年至今在香港中文大学工作,曾为普林斯顿高等研究院成员。2002年受邀在国际数学家大会上作报告,2004年获国际华人数学家大会最高奖大会-“晨兴数学金奖”,19991年获北美Sloan Research Fellowship。现任多个重要学术期刊编委;2012年至2016年担任香港数学会会长。研究领域为非线性偏微分方程,特别是流体力学等学科中的方程。在纳维-斯托克斯(NS)和欧拉等方程,动力学方程,非线性守恒律的理论和数值研究等方面取得一系列在国际上有深刻影响的成果,谷歌总被引10000余次,近5年被引4000余次。
欢迎广大师生在线听报告、交流!